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Abstract. Within the framework of the Standard Model, taking into account the arbitrary polarization 

states of the electron-positron pair, the differential cross section of the process of associated production 

of the Higgs boson pair and the vector 𝑍0-boson is calculated: 𝑒−𝑒+ → 𝐻𝐻𝑍0. All Feynman diagrams 

with the vertex of three Higgs boson (𝐻𝐻𝐻), two Higgs and two 𝑍0-boson (𝐻𝐻𝑍𝑍), as well as with the 

vertex of two 𝑍0- and one Higgs boson (𝑍𝑍𝐻) interactions are taken into account. Left-right (𝐴𝐿𝑅) and 

transverse (𝐴𝜑) spin asymmetries are determined. The characteristic features of the behavior of the 

polarization characteristics and the differential effective cross section of the reaction depending on the 

departure angles and particle energies are investigated and revealed. It is revealed that the left-right spin 

asymmetry 𝐴𝐿𝑅 depends only on the Weinberg parameter 𝑠𝑖𝑛2𝜃𝑊, while the transverse spin asymmetry 

𝐴𝜑 is a function of this parameter, the departure angles 𝜃, 𝜑 and the energies 𝑥𝑍, 𝑥1 of particles. The 

results of calculations of transverse spin asymmetry and differential effective cross section are illustrated 

by graphs. The possibility of measuring the triple Higgs boson interaction constant 𝑔𝐻𝐻𝐻 and the 

interaction constant of two Higgs and two Z bosons 𝑔𝑍𝑍𝐻𝐻 is discussed. 
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1.    Introduction 

 

The Standard Model (SM) (Glashow, 1967; Weinberg, 1967; Salam, 1968), based 

on the local gauge symmetry 𝑆𝑈𝐶(3) × 𝑆𝑈𝐿(2) × 𝑈𝑌(1), satisfactorily describes high 

energy physics (Djouadi, 2005; Abdullayev, 2017; Abdullayev, 2018). The SM 

introduces a doublet of scalar fields 𝜑 = (
𝜑+

𝜑0), the neutral component of which has a 

vacuum value other than zero. As a result of spontaneous symmetry breaking due to 

quantum excitations of the scalar field, the Higgs boson 𝐻 appears, and due to interaction 

with this field, the gauge bosons 𝑊± and 𝑍0, charged leptons and quarks acquire mass. 

This mechanism of particle mass generation is known as the mechanism of spontaneous 

violation of the Brouth-Englert-Higgs symmetry (Higgs, 1964a, 1964b; Englert & Brout, 

1964). 

The discovery of the Higgs boson H, carried out at the Large Hadron Collider 

(LHC) by ATLAS and CMS collaborations in 2012 at CERN (ATLAS Collaboration, 

2012; CMS Collaboration, 2012) (see also reviews (Rubakov, 2012; Lanyov, 2014; 

Kazakov, 2014)). With the discovery of the Higgs boson H, the missing particle in SM 
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was found, and this began a new period in the study of the properties of fundamental 

interactions. In this regard, theoretical and experimental interest in various channels of 

the production and decay of the Higgs boson H has greatly increased (Barger et al., 2003; 

Abdullayev et al., 2015; Abdullayev & Gojayev, 2017; ATLAS Collaboration, 2018; 

Abdullayev et al., 2019; Demirci, 2019; CMS Collaboration, 2021; Abdullayev & 

Omarova, 2021; Abdullayev & Gojayev, 2022; Kachanovich et al., 2022). 

The Higgs boson H interacts especially with vector 𝑊±- and 𝑍0-bosons, because 

of this, the main sources of the production of Higgs bosons are the radiation of their 𝑍0- 

and 𝑊-bosons born in various experiments. A particularly intense source of 𝐻-bosons 

could be the processes occurring in electron-positron collisions. It should be noted that 

the processes occurring during electron-positron annihilation are an effective method for 

studying the mechanisms of interaction of elementary particles. This is due to the 

following two circumstances. Firstly, the interaction of the 𝑒−𝑒+-pair is described in SM, 

so the results obtained are well interpreted. Secondly, since the 𝑒−𝑒+-pair does not 

participate in strong interactions, the background conditions of experiments are 

significantly improved compared to the studies conducted in the LHC with proton-proton 

beams. High-energy electron-positron colliders have already been designed, or are 

planned to be designed in various laboratories around the world (Shiltsev, 2012; Peters, 

2017). 

The process of the production of one Higgs boson H in electron-positron collisions 

𝑒−𝑒+ → 𝐻𝑍0 is considered in a number of papers (Kilian et al., 1996; Djouadi, 2005; 

Abada, 2013; Greco et al., 2016; Gong et al., 2017; Greco et al., 2018). Here we 

investigate the process of generation of the Higgs boson of a pair and a vector 𝑍0-boson 

in arbitrarily polarized electron-positron collisions 

 𝑒− + 𝑒+ → 𝐻 + 𝐻 + 𝑍0. (1) 

In the case of an unpolarized 𝑒−𝑒+-pair, this process is considered in the works 

(Djouadi et al., 1999; Barger et al., 2003; Djouadi, 2005). 

Within the framework of the SM and taking into account arbitrary polarizations of 

the 𝑒−𝑒+-pair, an analytical expression for the differential effective cross section of the 

reaction (1) is obtained. Left-right and transverse spin asymmetries due to the 

polarizations of the 𝑒−𝑒+-pair are determined. The dependence of the asymmetries and 

the effective cross-section of the reaction on the departure angles and particle energies is 

studied in detail. The possibility of measuring the interaction constant of two 𝑍0- and two 

Higgs bosons  𝑔𝑍𝑍𝐻𝐻, and the triple Higgs boson interaction constant 𝑔𝐻𝐻𝐻 is discussed. 

 

2.    Calculation of diagrams a) and b) 

 

The process of the production of the Higgs boson of a pair of 𝐻𝐻 and a vector 𝑍0-

boson is described by four Feynman diagrams shown in Fig. 1 (4-momentum and spin 

vectors of particles are indicated in parentheses). First, consider diagram a) with the 

vertex of the triple Higgs boson interaction. The amplitude of this diagram can be written 

as follows: 

 𝑀𝑎 = 𝑔𝑍𝑒𝑒𝑔𝑍𝑍𝐻𝑔𝐻𝐻𝐻𝐷𝜇𝜈(𝑝)𝐷𝐻(𝑞)ℓ𝜇𝑈𝜈
∗(𝑘). (2) 

Here ℓ𝜇 is a weak neutral electron-positron current: 

 ℓ𝜇 = 𝜐̄(𝑝2, 𝑠2)𝛾𝜇[𝑔𝐿(1 + 𝛾5) + 𝑔𝑅(1 − 𝛾5)]𝑢(𝑝1, 𝑠1); (3) 

𝑔𝑍𝑒𝑒 is the constant of the interaction of the 𝑍0-boson with the 𝑒−𝑒+-pair; 𝑔𝑍𝑍𝐻  and 
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𝑔𝐻𝐻𝐻 are constants of the 𝑍0- and Higgs boson, triple Higgs boson interactions; according 

to SM, these constants are equal (Djouadi, 2005): 

 𝑔𝑍𝑒𝑒 = (√2𝐺𝐹)
1/2𝑀𝑍, 𝑔𝑍𝑍𝐻 = 2(√2𝐺𝐹)

1/2𝑀𝑍
2, 𝑔𝐻𝐻𝐻 = 3(√2𝐺𝐹)

1/2𝑀𝐻
2 , 

𝑀𝑍 and 𝑀𝐻 are the masses of 𝑍0- and 𝐻-bosons; 𝐺𝐹 is the Fermi constant of weak 

interactions; the left 𝑔𝐿 and right 𝑔𝑅 electron interaction constants are uniquely 

determined by the Weinberg parameter 𝑥𝑊 = 𝑠𝑖𝑛2 𝜃𝑊: 

𝑔𝐿 = −
1

2
+ 𝑥𝑊 ,  𝑔𝑅 = 𝑥𝑊; 

𝑠1 and 𝑠2 are the 4-polarization vectors of the electron and positron, 𝐷𝜇𝜈(𝑝) and 𝐷𝐻(𝑞) 

are the propagators of the vector 𝑍0- and scalar 𝐻-bosons 

𝐷𝜇𝜈(𝑝) = 𝑖
−𝑔𝜇𝜈 + 𝑝𝜇𝑝𝜈 𝑀𝑍

2⁄

𝑝2 − 𝑀𝑍
2 ,  𝐷𝐻(𝑞) =

𝑖

𝑞2 − 𝑀𝐻
2 ; 

𝑝 = 𝑝1 + 𝑝2 and 𝑞 = 𝑘1 + 𝑘2 are the total 4-momentus of the electron-positron and 

Higgs boson pairs; 𝑈𝜈
∗(𝑘) –is the 4-polarization vector of the 𝑍0-boson.  

 

Fig. 1. Feynman diagrams of reaction 𝑒−𝑒+ → 𝑍𝐻𝐻 

 

At high energies of 𝑒−𝑒+-pairs √𝑠 >> 𝑚 (where √𝑠 is the total energy of 𝑒−𝑒+-

pairs in the center of mass system, 𝑚 is the mass of electron), a weak neutral electron 

current is preserved: 

 𝑝𝜇ℓ𝜇 = (𝑝1 + 𝑝2)𝜇ℓ𝜇 = 0,  

for this reason, the amplitude (2) is simplified 

 𝑀𝑎 = 𝑔𝑍𝑒𝑒𝑔𝑍𝑍𝐻𝑔𝐻𝐻𝐻𝐷𝑍(𝑠)𝐷𝐻(𝑠1)ℓ𝜇𝑈𝜇
∗(𝑘), (4) 

where 
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𝐷𝑍(𝑠) =
1

𝑠(1 − 𝑟𝑍)
, 𝐷𝐻(𝑠1) =

1

𝑠1 − 𝑀𝐻
2 =

1

𝑠(𝑦𝑍 + 𝑟𝑍 − 𝑟𝐻)
, 

𝑠1 = (𝑘1 + 𝑘2)
2 = 𝑠(1 − 𝑥𝑍 + 𝑟𝑍) is the square of the invariant mass of the Higgs boson 

pair and the following values are introduced 

𝑟𝑍 =
𝑀𝑍

2

𝑠
,  𝑟𝐻 =

𝑀𝐻
2

𝑠
,  𝑥𝑍 =

2𝐸𝑍

√𝑠
,  𝑦𝑍 = 1 − 𝑥𝑍. (5) 

For the modulus of the square of the amplitude (4), the expression was obtained 

|𝑀𝑎|
2 =

72√2𝐺𝐹
3𝑀𝑍

6

𝑠2(1 − 𝑟𝑍)2
⋅

𝑀𝐻
4

𝑠2(𝑦𝑍 + 𝑟𝑍 − 𝑟𝐻)2
𝐿𝜇𝜈𝑈𝜇

∗(𝑘)𝑈𝜈(𝑘). (6) 

Here 𝐿𝜇𝜈 = ℓ𝜇ℓ̄𝜈 is an 𝑒−𝑒+-pair tensor having the following form 

𝐿𝜇𝜈 = 2(𝑔𝐿
2 + 𝑔𝑅

2)[𝑝1𝜇𝑝2𝜈 + 𝑝2𝜇𝑝1𝜈 − (𝑝1 ⋅ 𝑝2)𝑔𝜇𝜈 − 𝑚2(𝑠1𝜇𝑠2𝜈 + 𝑠2𝜇𝑠1𝜈 − 

−(𝑠1 ⋅ 𝑠2)𝑔𝜇𝜈)] + 2(𝑔𝐿
2 − 𝑔𝑅

2)𝑚[𝑝1𝜇𝑠2𝜈 + 𝑠2𝜇𝑝1𝜈 − (𝑝1 ⋅ 𝑠2)𝑔𝜇𝜈 − 𝑝2𝜇𝑠1𝜈 − 

−𝑠1𝜇𝑝2𝜈 + (𝑝1 ⋅ 𝑠1)𝑔𝜇𝜈)] + 4𝑔𝐿𝑔𝑅[(𝑝1 ⋅ 𝑠2)(𝑠1𝜇𝑝2𝜈 + 𝑠1𝜈𝑝2𝜇 − (𝑠1 ⋅ 𝑝2)𝑔𝜇𝜈) + 

+(𝑝2 ⋅ 𝑠1)(𝑝1𝜇𝑠2𝜈 + 𝑝1𝜈𝑠2𝜇) − (𝑝1 ⋅ 𝑝2)(𝑠1𝜇𝑠2𝜈 + 𝑠2𝜇𝑠1𝜈 − (𝑠1 ⋅ 𝑠2)𝑔𝜇𝜈) − 

 (𝑠1 ⋅ 𝑠2)(𝑝1𝜇𝑝2𝜈 + 𝑝2𝜇𝑝1𝜈)]. (7) 

We summarize by the polarization states of the vector 𝑍0-boson  

∑𝑈𝜇
∗(𝑘)𝑈𝜈(𝑘) = −𝑔𝜇𝜈 +

𝑘𝜇𝑘𝜈

𝑀𝑍
2

Pol.

. 

We calculate the product of the electron and 𝑍0-boson tensors 

𝐿𝜇𝜈 (−𝑔𝜇𝜈 +
𝑘𝜇𝑘𝜈

𝑀𝑍
2 ) = 2(𝑔𝐿

2 + 𝑔𝑅
2) × 

 × [(𝑝1 ⋅ 𝑝2) − 𝑚2(𝑠1 ⋅ 𝑠2) +
2

𝑀𝑍
2 ((𝑝1 ⋅ 𝑘)(𝑝2 ⋅ 𝑘) − 𝑚2(𝑘 ⋅ 𝑠1)(𝑘 ⋅ 𝑠2))] +  

 +2(𝑔𝐿
2 − 𝑔𝑅

2)𝑚 [(𝑝1 ⋅ 𝑠2) − (𝑝2 ⋅ 𝑠1) +
2

𝑀𝑍
2 ((𝑝1 ⋅ 𝑘)(𝑘 ⋅ 𝑠2) − (𝑝2 ⋅ 𝑘)(𝑘 ⋅ 𝑠1))] +  

 +4𝑔𝐿𝑔𝑅 [(𝑝1 ⋅ 𝑝2)(𝑠1 ⋅ 𝑠2) − (𝑝1 ⋅ 𝑠2)(𝑝2 ⋅ 𝑠1) +
2

𝑀𝑍
2 ((𝑝1 ⋅ 𝑘)(𝑝2 ⋅ 𝑠1)(𝑘 ⋅ 𝑠2) +  

 +(𝑝2 ⋅ 𝑘)(𝑝1 ⋅ 𝑠2)(𝑘 ⋅ 𝑠1) − (𝑝1 ⋅ 𝑝2)(𝑘 ⋅ 𝑠1)(𝑘 ⋅ 𝑠2) (𝑝1 ⋅ 𝑘)(𝑝2 ⋅ 𝑘)(𝑠1 ⋅ 𝑠2))]. (8) 

The differential effective cross section of the process 𝑒−𝑒+ → 𝐻𝐻𝑍0 is related to 

the square of the amplitude |𝑀𝑎|
2 by the ratio: 

𝑑3𝜎𝑎

𝑑𝑥𝑍𝑑𝑥1𝑑𝛺
=

1

64
⋅
|𝑀𝑎|

2

(2𝜋)4
= 

=
9√2𝐺𝐹

3𝑀𝑍
6

128𝜋4𝑠2(1 − 𝑟𝑍)2
⋅

𝑟𝐻
2

(𝑦𝑍 + 𝑟𝑍 − 𝑟𝐻)2
𝐿𝜇𝜈 (−𝑔𝜇𝜈 +

𝑘𝜇𝑘𝜈

𝑀𝑍
2 ), (9) 

where the product of the electron-positron and 𝑍0-boson tensors is given by expression 

(8), 𝑑𝛺 = 𝑠𝑖𝑛 𝜃 𝑑𝜃𝑑𝜑 is the solid angle of departure of the 𝑍0-boson, θ is the angle 

between the directions of the electron and 𝑍0-boson momentums. 
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Let us consider some special cases of the differential effective cross section (9). 

First, assume that the 𝑒−𝑒+-pair is longitudinally polarized: 

𝑠1𝜇 =
√𝑠

2𝑚
𝜆1(1, 𝑛⃗ ),  𝑠2𝜇 =

√𝑠

2𝑚
𝜆2(1, −𝑛⃗ ). 

Here 𝜆1 and 𝜆2 are the helicities of the electron and positron, 𝑛⃗  is a unit vector in the 

direction of the electron momentum. 

In this case, the differential effective cross section (9) will take the form 

𝑑3𝜎𝑎(𝜆1, 𝜆2)

𝑑𝑥𝑍𝑑𝑥1𝑑𝛺
=

9√2

512𝜋4
⋅

𝐺𝐹
3𝑀𝑍

6

𝑠(1 − 𝑟𝑍)2
⋅

𝑟𝐻
2

(𝑦𝑍 + 𝑟𝑍 − 𝑟𝐻)2
⋅
1

𝑟𝑍
× 

× [𝑔𝐿
2(1 − 𝜆1)(1 + 𝜆2) + 𝑔𝑅

2(1 + 𝜆1)(1 − 𝜆2)][𝑥𝑍
2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃)]. (10) 

From this effective cross-section formula it follows that the electron and positron 

must have opposite helicities: 𝜆1 = −𝜆2 = ±1 (electron left, positron right – 𝑒𝐿
−𝑒𝑅

+ or 

electron right positron left – 𝑒𝑅
−𝑒𝐿

+). This fact is due to the preservation of the total 

moment in the transition 𝑒− + 𝑒+ → 𝑍0. 

Now consider the case when an electron-positron pair is transversely polarized 

 𝑠1𝜇 = (0, 𝜂 1), 𝑠2𝜇 = (0, 𝜂 2),  

where 𝜂 1 and 𝜂 2 are the transverse components of the spin vectors of the electron and 

positron. 

Let's direct the electron's momentum along the Z axis, and its spin vector 𝜂 1 along 

the X axis (see Fig. 2), then the spin vector 𝜂 2 will lie in the XOY plane, the angle between 

the spin vectors 𝜂 1 and 𝜂 2 is denoted by Φ. In this case, the differential effective cross 

section (9) will take the form: 

𝑑3𝜎𝑎(𝜂 1, 𝜂 2)

𝑑𝑥𝑍𝑑𝑥1𝑑𝛺
=

9√2𝐺𝐹
3𝑀𝑍

6

512𝜋4𝑠𝑟𝑍
⋅

1

(1 − 𝑟𝑍)2
⋅ (

𝑟𝐻
𝑦𝑍 + 𝑟𝑍 − 𝑟𝐻

)
2

{(𝑔𝐿
2 + 𝑔𝑅

2) × 

× [𝑥𝑍
2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃)] − 2𝑔𝐿𝑔𝑅𝜂1𝜂2(𝑥𝑍

2 − 4𝑟𝑍) 𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠( 2𝜑 − Φ)}. (11) 

 

  
 

Fig. 2. Choosing a coordinate system 

 

Now we proceed with the calculation of the Feynman diagram b) in Fig. 1 with the 

vertex of two 𝑍0- and two 𝐻-bosons. The amplitude of this diagram will be written as 

follows 

 𝑀𝑏 = −𝑖𝑔𝑍𝑒𝑒𝑔𝑍𝑍𝐻𝐻ℓ𝜇𝐷𝜇𝜈(𝑝)𝑈𝜈
∗(𝑘), (12) 
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where 𝑔𝑍𝑍𝐻𝐻 is the interaction constant defined in SM by the expression 

 𝑔𝑍𝑍𝐻𝐻 = 2√2𝐺𝐹𝑀𝑍
2. 

Based on the amplitude (12), the following expression is obtained for the 

differential effective cross section of the process 𝑒−𝑒+ → 𝐻𝐻𝑍0, taking into account 

arbitrary polarizations of the 𝑒−𝑒+-pair 

𝑑3𝜎𝑏(𝜆1, 𝜆2, 𝜂1, 𝜂2)

𝑑𝑥𝑍𝑑𝑥1𝑑𝛺
=

√2𝐺𝐹
3𝑀𝑍

6

512𝜋4𝑠(1 − 𝑟𝑍)2
⋅
1

𝑟𝑍
× 

× {[𝑔𝐿
2(1 − 𝜆1)(1 + 𝜆2) + 𝑔𝑅

2(1 + 𝜆1)(1 − 𝜆2)][𝑥𝑍
2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃)] + 

 +2𝑔𝐿𝑔𝑅𝜂1𝜂2(𝑥𝑍
2 − 4𝑟𝑍

2) 𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠 2𝜑}. (13) 

It should be noted that there is interference between diagrams a) and b). Taking into 

account the interference of these diagrams for the differential cross section of the reaction 

(1), the following expression is obtained (𝑒−𝑒+-the pair is arbitrarily polarized, the angle 

Φ is assumed to be π):  

𝑑3𝜎𝑎+𝑏

𝑑𝑥𝑍𝑑𝑥1𝑑𝛺
=

√2𝐺𝐹
3𝑀𝑍

6

512𝜋4𝑠(1 − 𝑟𝑍)2
⋅
1

𝑟𝑍
(1 −

3𝑟𝐻
𝑦𝑍 + 𝑟𝑍 − 𝑟𝐻

)
2

× 

× {[𝑔𝐿
2(1 − 𝜆1)(1 + 𝜆2) + 𝑔𝑅

2(1 + 𝜆1)(1 − 𝜆2)][𝑥𝑍
2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃)] + 

 +2𝑔𝐿𝑔𝑅𝜂1𝜂2(𝑥𝑍
2 − 4𝑟𝑍

2) 𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠 2𝜑}. (14) 

Based on the effective cross-section formula (14), we determine the left-right spin 

asymmetry due to the longitudinal polarization of an electron or positron: 

𝐴𝐿𝑅 =
𝑔𝐿

2 − 𝑔𝑅
2

𝑔𝐿
2 + 𝑔𝑅

2 =
0.25 − 𝑥𝑊

0.25 − 𝑥𝑊 + 2𝑥𝑊
2 . (15) 

The left-right spin asymmetry 𝐴𝐿𝑅 depends only on the Weinberg parameter 𝑥𝑊 

and with the value of this parameter 𝑥𝑊 = 0,2315 is 𝐴𝐿𝑅 = 14%. 

It also follows from the expression of the effective cross section (14) that an 

azimuthal angular asymmetry should be observed in the angular distribution of the 𝑍0-

boson, determined by the formula 

𝐴𝜑 =
2𝑔𝐿𝑔𝑅

𝑔𝐿
2 + 𝑔𝑅

2 ⋅
(𝑥𝑍

2 − 4𝑟𝑍) 𝑠𝑖𝑛2 𝜃

𝑥𝑍
2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃)

⋅ 𝑐𝑜𝑠 2𝜑. (16) 

Azimuthal asymmetry 𝐴𝜑 is sometimes called transverse spin asymmetry, since it 

occurs only during annihilation of a transversely polarized 𝑒−𝑒+-pair. The transverse spin 

asymmetry 𝐴𝜑 is maximal at the azimuthal departure angle 𝜑 = 0 and 𝜋, it depends on 

both the polar angle 𝜃 and the energy 𝑥𝑍. 

Figure 3 shows the angular dependence of the transverse spin asymmetry 𝐴𝜑 at 

√𝑠 =500 GeV, 𝑀𝑍 = 91.1875 GeV, 𝑥𝑊 = 0.2315 and various 𝑍-boson energies: 1) 

𝑥𝑍 = 0.4; 2) 𝑥𝑍 = 0.6; 3) 𝑥𝑍 = 0.78. As follows from the figure, the transverse spin 

asymmetry 𝐴𝜑 is negative, with an increase in the angle of departure 𝜃 it decreases and 

reaches a minimum at an angle  𝜃 = 90°. Further growth of the angle 𝜃 leads to an 

increase in the transverse spin asymmetry. With an increase in the fraction of energy 𝑥𝑍 

carried away by the 𝑍0-boson, the graph of the dependence of the transverse spin 

asymmetry 𝐴𝜑 on the angle 𝜃 is located below. 

Fig. 4 illustrates the energy dependence of the transverse spin asymmetry 𝐴𝜑 at 

different departure angles of the 𝑍0-boson: 1) 𝜃 = 30°; 2) 𝜃 = 60°; 3) 𝜃 = 90°. It can be 

seen from the figure that with an increase in the energy of the 𝑍0-boson, the transverse 
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spin asymmetry decreases, an increase in the angle 𝜃 also leads to a decrease in the 

transverse spin asymmetry  𝐴𝜑. 

Averaging the cross section (14) over the polarization states of the 𝑒−𝑒+-pair and 

integrating over the departure angles of the 𝑍0-boson, we obtain the energy spectrum of 

the particles: 

𝑑2𝜎𝑎+𝑏

𝑑𝑥𝑍𝑑𝑥1
=

𝐺𝐹
3𝑀𝑍

6

96√2𝜋3
⋅

𝑥𝑍
2 + 8𝑟𝑍

𝑠𝑟𝑍(1 − 𝑟𝑍)2
(1 −

3𝑟𝐻
𝑦𝑍 + 𝑟𝑍 − 𝑟𝐻

)
2

(𝑔𝐿
2 + 𝑔𝑅

2). (17) 

 
Fig. 3. Angular dependence of the asymmetry 𝐴𝜑 at different energies 𝑥𝑍 

 

 
Fig. 4. Energy dependence of asymmetry Aφ at different angles θ 

 

Figure 5 shows the energy dependence of the cross section reaction 𝑒−𝑒+ → 𝐻𝐻𝑍0 

on the variable 𝑥𝑍 at the energy 𝑒−𝑒+-pair √𝑠=500 GeV. It follows from the figure that 

with an increase in the fraction of energy carried away by the 𝑍0-boson, the cross section 
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monotonically decreases. 

 

Fig. 5. Dependence of the cross section reaction 𝑒−𝑒+ → 𝑍𝐻𝐻 on the energy 𝑥𝑍 

 

3.    Calculation of diagrams c) and d) 

 

The amplitude corresponding to diagram c) Fig. 1 can be written as: 

 𝑀𝑐 = 𝑔𝑍𝑒𝑒𝑔𝑍𝑍𝐻
2 ℓ𝜇𝐷𝜇𝜈(𝑝)𝐷𝜈𝜌(𝑞)𝑈𝜌

∗(𝑘), (18) 

where 𝑞 = 𝑝 − 𝑘1 = 𝑘1 + 𝑘2. 

As noted above, at high energies, the weak neutral current of the 𝑒−𝑒+-pair is 

preserved, as a result, the amplitude is simplified: 

𝑀𝑐 = 𝑔𝑍𝑒𝑒𝑔𝑍𝑍𝐻
2 ⋅

1

𝑠(1 − 𝑟𝑍)
⋅

1

𝑠(𝑦1 + 𝑟𝐻 − 𝑟𝑍)
⋅ ℓ𝜇 ⋅ (𝑔𝜇𝜌 −

𝑞𝜇𝑞𝜌

𝑀𝑍
2 )𝑈𝜌

∗(𝑘), (19) 

where  𝑦1 = 1 − 𝑥1, 𝑥1 = 2𝐸1 √𝑠⁄ , 𝐸1 is the Higgs boson energy with 4-momentum 𝑘1. 

For the modulus of the square of the matrix element (19), the expression is obtained: 

|𝑀𝑐|
2 =

𝑔𝑍𝑒𝑒
2

𝑠2(1 − 𝑟𝑍)2

𝑔𝑍𝑍𝐻
4

𝑠2(𝑦1 + 𝑟𝐻 − 𝑟𝑍)2
× 

× 𝐿𝜇𝜈 (𝑔𝜇𝜌 −
𝑞𝜇𝑞𝜌

𝑀𝑍
2 ) ⋅ (𝑔𝜈𝜎 −

𝑞𝜈𝑞𝜌

𝑀𝑍
2 ) ⋅ (−𝑔𝜌𝜎 +

𝑘𝜌𝑘𝜎

𝑀𝑍
2 ). (20) 

Here 𝐿𝜇𝜈 = ℓ𝜇ℓ̄𝜈 is the electron-positron tensor (7). In (20), the tensor 

∑𝑈𝜌
∗(𝑘)𝑈𝜎(𝑘) = −𝑔𝜌𝜎 +

𝑘𝜌𝑘𝜎

𝑀𝑍
2

pol.

 

arises due to the summation of the vector 𝑍0-boson over the polarization states. 

We define the product of the electron-positron 𝐿𝜇𝜈 and 𝑍0-boson tensors 

𝐿𝜇𝜈 (−𝑔𝜌𝜎 +
𝑘𝜌𝑘𝜎

𝑀𝑍
2 )(𝑔𝜇𝜌 −

𝑞𝜇𝑞𝜌

𝑀𝑍
2 ) ⋅ (𝑔𝜈𝜎 −

𝑞𝜈𝑞𝜎

𝑀𝑍
2 ) = 𝐿𝜇𝜈 × 

0
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× [−𝑔𝜇𝜈 +
𝑘𝜇𝑘𝜈

𝑀𝑍
2 +

𝑘1𝜇𝑘1𝜈

𝑀𝑍
2 (2 −

𝑦1 + 𝑟𝐻
𝑟𝑍

+
(𝑦1 + 𝑟𝑍)

2

4𝑟𝑍
2 ) +

𝑘𝜇𝑘1𝜈 + 𝑘𝜈𝑘1𝜇

𝑀𝑍
2 ⋅

𝑦1 + 𝑟𝑍
2𝑟𝑍

] = 

= 2(𝑔𝐿
2 + 𝑔𝑅

2) [(𝑝1 ⋅ 𝑝2) − 𝑚2(𝑠1 ⋅ 𝑠2) +
2

𝑀𝑍
2 ((𝑝1 ⋅ 𝑘)(𝑝2 ⋅ 𝑘) − 𝑚2(𝑘 ⋅ 𝑠1)(𝑘 ⋅ 𝑠2))] + 

+2(𝑔𝐿
2 − 𝑔𝑅

2)𝑚 [(𝑝1 ⋅ 𝑠2) − (𝑝2 ⋅ 𝑠1) +
2

𝑀𝑍
2 ((𝑝1 ⋅ 𝑘)(𝑘 ⋅ 𝑠2) − (𝑝2 ⋅ 𝑘)(𝑘 ⋅ 𝑠1))] + 4𝑔𝐿𝑔𝑅 × 

× [(𝑝1 ⋅ 𝑝2)(𝑠1 ⋅ 𝑠2) − (𝑝1 ⋅ 𝑠2)(𝑝2 ⋅ 𝑠1) +
2

𝑀𝑍
2  ((𝑝1 ⋅ 𝑠2)(𝑘 ⋅ 𝑠1)(𝑘 ⋅ 𝑝2) + 

+ (𝑝2 ⋅ 𝑠1)(𝑘 ⋅ 𝑠2)(𝑘 ⋅ 𝑝1) − (𝑝1 ⋅ 𝑝2)(𝑘 ⋅ 𝑠1)(𝑘 ⋅ 𝑠2) − (𝑠1 ⋅ 𝑠2)(𝑝1 ⋅ 𝑘)(𝑝2 ⋅ 𝑘)] + 

+(2 −
𝑦1 + 𝑟𝐻

𝑟𝑍
+

(𝑦1 + 𝑟𝑍)
2

4𝑟𝑍
2 ) ∙

2

𝑀𝑍
2 {(𝑔𝐿

2 + 𝑔𝑅
2)[2(𝑝1 ⋅ 𝑘1)(𝑝2 ⋅ 𝑘1) − 𝑀𝐻

2(𝑝1 ⋅ 𝑝2) − 

−𝑚2(2(𝑘1 ⋅ 𝑠1)(𝑘1 ⋅ 𝑠2) − 𝑀𝐻
2(𝑠1 ⋅ 𝑠2))] + (𝑔𝐿

2 − 𝑔𝑅
2)𝑚[2(𝑘1 ⋅ 𝑝1)(𝑘1 ⋅ 𝑠2) − 

−𝑀𝐻
2(𝑝1 ⋅ 𝑠2) − 2(𝑘1 ⋅ 𝑝2)(𝑘1 ⋅ 𝑠1) + 𝑀𝐻

2(𝑝2 ⋅ 𝑠1))] + 2𝑔𝐿𝑔𝑅[(𝑝1 ⋅ 𝑠2)(2(𝑘1 ⋅ 𝑝2)(𝑘1 ⋅ 𝑠1) − 

−𝑀𝐻
2(𝑝2 ⋅ 𝑠1)) − (𝑝1 ⋅ 𝑝2)(2(𝑘1 ⋅ 𝑠1)(𝑘1 ⋅ 𝑠2) − 𝑀𝐻

2(𝑠1 ⋅ 𝑠2)) + 2(𝑝2 ⋅ 𝑠1)(𝑘1 ⋅ 𝑝1) × 

× (𝑘1 ⋅ 𝑠2) − 2(𝑠1 ⋅ 𝑠2)(𝑝1 ⋅ 𝑘1)(𝑝2 ⋅ 𝑘1)]} + 

+
𝑦1 + 𝑟𝑍

𝑟𝑍

2

𝑀𝑍
2
{(𝑔𝐿

2 + 𝑔𝑅
2)[(𝑘 ⋅ 𝑝1)(𝑘1 ⋅ 𝑝2) + (𝑘 ⋅ 𝑝2)(𝑘1 ⋅ 𝑝1) − (𝑝1 ⋅ 𝑝2)(𝑘 ⋅ 𝑘1) − 

−𝑚2((𝑘 ⋅ 𝑠1)(𝑘1 ⋅ 𝑠2) + (𝑘 ⋅ 𝑠2)(𝑘1 ⋅ 𝑠1) − (𝑠1 ⋅ 𝑠2)(𝑘 ⋅ 𝑘1)] + (𝑔𝐿
2 − 𝑔𝑅

2)𝑚[(𝑘 ⋅ 𝑝1) × 

× (𝑘1 ⋅ 𝑠2) + (𝑘 ⋅ 𝑠2)(𝑘1 ⋅ 𝑝1) − (𝑝1 ⋅ 𝑠2)(𝑘 ⋅ 𝑘1) − (𝑘 ⋅ 𝑠1)(𝑘1 ⋅ 𝑝2) − (𝑘 ⋅ 𝑝2)(𝑘1 ⋅ 𝑠1) + 

+(𝑝2 ⋅ 𝑠1)(𝑘 ⋅ 𝑘1)] + 2𝑔𝐿𝑔𝑅[(𝑝1 ⋅ 𝑠2)((𝑘 ⋅ 𝑠1)(𝑘1 ⋅ 𝑝2) + (𝑘 ⋅ 𝑝2)(𝑘1 ⋅ 𝑠1) − 

−(𝑝1 ⋅ 𝑠2)(𝑘 ⋅ 𝑘1)) − (𝑝1 ⋅ 𝑝2)((𝑘 ⋅ 𝑠1)(𝑘1 ⋅ 𝑠2) + (𝑘 ⋅ 𝑠2)(𝑘1 ⋅ 𝑠1) − (𝑠1 ⋅ 𝑠2)(𝑘 ⋅ 𝑘1)) + 

+(𝑝2 ⋅ 𝑠1)((𝑘 ⋅ 𝑝1)(𝑘1 ⋅ 𝑠2) + (𝑘 ⋅ 𝑠2)(𝑘1 ⋅ 𝑝1)) − (𝑠1 ⋅ 𝑠2) × 

× ((𝑘 ⋅ 𝑝1)(𝑘1 ⋅ 𝑝2) + (𝑘 ⋅ 𝑝2)(𝑘1 ⋅ 𝑝1))]}.                                    (21) 

The differential effective cross section of the reaction 𝑒−𝑒+ → 𝐻𝐻𝑍0 is expressed 

by the formula 

𝑑3𝜎𝑐

𝑑𝑥𝑍𝑑𝑥1𝑑𝛺
=

1

64
⋅
|𝑀𝑐|

2

(2𝜋)4
=

√2𝐺𝐹
3𝑀𝑍

6

32𝜋4𝑠2(1 − 𝑟𝑍)
2
⋅

𝑟𝑍
2

(𝑦1 + 𝑟𝐻 − 𝑟𝑍)
2
𝐿𝜇𝜈 × 

× [−𝑔𝜇𝜈 +
𝑘𝜇𝑘𝜈

𝑀𝑍
2 +

𝑘1𝜇𝑘1𝜈

𝑀𝑍
2 (2 −

𝑦1 + 𝑟𝐻
𝑟𝑍

+
(𝑦1 + 𝑟𝑍)

2

4𝑟𝑍
2 ) +

𝑘𝜇𝑘1𝜈 + 𝑘𝜈𝑘1𝜇

𝑀𝑍
2 ⋅

𝑦1 + 𝑟𝑍
2𝑟𝑍

], (22) 

where the product of the electron-positron 𝐿𝜇𝜈 and 𝑍0-boson tensors is given by 

expression (21). In the system center-of-mass 𝑒−𝑒+-a pair for 𝑝 1 + 𝑝 2 = 𝑘⃗ + 𝑘⃗ 1 + 𝑘⃗ 2 =
0 end particles lie in the same plane with the azimuthal angle 𝜑 of departure. 

In the system of the center of mass 𝑒−𝑒+-pairs, the laws of conservation of energy 

and momentum in the variables 𝑥𝑍, 𝑥1, 𝑥2 and angles 𝜃, 𝜃1, 𝜃2 are written as follows: 

 𝑥𝑍 + 𝑥1 + 𝑥2 = 2,  

 √𝑥𝑍
2 − 4𝑟𝑍 𝑐𝑜𝑠 𝜃 + √𝑥1

2 − 4𝑟𝐻 𝑐𝑜𝑠 𝜃1 + √𝑥2
2 − 4𝑟𝐻 𝑐𝑜𝑠 𝜃2 = 0.  

Here 𝜃1 (𝜃2) is the angle between the directions of the electron momentums and the first 

(second) Higgs boson. The energy of the 𝑍0-boson is enclosed in the region 



ADVANCED PHYSICAL RESEARCH, V.4, N.1, 2022 

 

 
42 

 

2𝑀𝑍

√𝑠
≤ 𝑥𝑍 ≤ 1 + 𝑟𝑍 − 4𝑟𝐻. 

Let us consider special cases of differential effective cross-section (22). If the 

𝑒−𝑒+-pair is longitudinally polarized, then the effective cross section (22) will take the 

form 

𝑑3𝜎𝑐(𝜆1, 𝜆2)

𝑑𝑥𝑍𝑑𝑥1𝑑𝛺
=

√2𝐺𝐹
3𝑀𝑍

6

128𝜋4𝑠(1 − 𝑟𝑍)
2
⋅

𝑟𝑍
(𝑦1 + 𝑟𝐻 − 𝑟𝑍)

2
× 

× [𝑔𝐿
2(1 − 𝜆1)(1 + 𝜆2) + 𝑔𝑅

2(1 + 𝜆1)(1 − 𝜆2)] × 

× {𝑥𝑍
2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃) + (2 −

𝑦1 + 𝑟𝐻
𝑟𝑍

+
(𝑦1 + 𝑟𝑍)

2

4𝑟𝑍
2 ) (𝑥1

2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃1 + 

+
𝑦1 + 𝑟𝑍

𝑟𝑍
[𝑥𝑍𝑥1 − √(𝑥𝑍

2 − 4𝑟𝑍)(𝑥1
2 − 4𝑟𝐻) 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜃1 − 2(𝑦2 − 𝑧𝑍)]}, (23) 

where 𝑦2 = 1 − 𝑥2. 

It follows from the formula of the differential effective cross section (23) that the 

cross section of the process 𝑒𝐿
−𝑒+ → 𝐻𝐻𝑍0 differs from the cross section of the reaction 

𝑒𝑅
−𝑒+ → 𝐻𝐻𝑍0. Therefore, the process under consideration 𝑒−𝑒+ → 𝐻𝐻𝑍0 has a left-

right spin asymmetry 

𝐴𝐿𝑅 =
𝑔𝐿

2 − 𝑔𝑅
2

𝑔𝐿
2 + 𝑔𝑅

2 . 

As noted above, with the value of the parameter 𝑥𝑊 =0,2315, the left-right (or 

longitudinal) spin asymmetry is 𝐴𝐿𝑅 = 14%. 

If the electron and positron are transversely polarized, then the differential effective 

cross section is expressed by the formula 

𝑑3𝜎𝑐(𝜂1, 𝜂2)

𝑑𝑥𝑍𝑑𝑥1𝑑𝛺
=

√2

128𝜋4
⋅

𝐺𝐹
3𝑀𝑍

6

𝑠(1 − 𝑟𝑍)2
⋅

𝑟𝑍
(𝑦1 + 𝑟𝐻 − 𝑟𝑍)2

× 

× [(𝑔𝐿
2 + 𝑔𝑅

2)𝑓1 + 2𝑔𝐿𝑔𝑅𝜂1𝜂2𝑓2]. (24) 

Here 

𝑓1 = 𝑥𝑍
2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃) + (2 −

𝑦1 + 𝑟𝐻
𝑟𝑍

+
(𝑦1 + 𝑟𝑍)

2

4𝑟𝑍
2 ) (𝑥1

2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃1 + 

+
𝑦1 + 𝑟𝑍

𝑟𝑍
[𝑥𝑍𝑥1 − √(𝑥𝑍

2 − 4𝑟𝑍)(𝑥1
2 − 4𝑟𝐻) 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜃1 − 2(𝑦2 − 𝑧𝑍)], (25) 

𝑓2 = −(𝑥𝑍
2 − 4𝑟𝑍) 𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠( 2𝜑 − 𝛷) − (2 −

𝑦1 + 𝑟𝐻
𝑟𝑍

+
(𝑦1 + 𝑟𝑍)

2

4𝑟𝑍
2 ) × 

× (𝑥1
2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃1 𝑐𝑜𝑠( 2𝜑 − 𝛷) +

𝑦1 + 𝑟𝑍
𝑟𝑍

× 

× [𝑐𝑜𝑠 Φ (𝑥𝑍𝑥1 − √(𝑥𝑍
2 − 4𝑟𝑍)(𝑥1

2 − 4𝑟𝐻) 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜃1 −√(𝑥𝑍
2 − 4𝑟𝑍)(𝑥1

2 − 4𝑟𝐻) × 
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× 𝑠𝑖𝑛 𝜃𝑠𝑖𝑛𝜃1 (𝑐𝑜𝑠 Φ + 𝑐𝑜𝑠(2𝜑 Φ)) − 2(𝑦2 − 𝑟𝑍) 𝑐𝑜𝑠 Φ]. (26) 

It can be seen from the formula of the differential effective cross section (24) that 

the process 𝑒−𝑒+ → 𝐻𝐻𝑍0 has a transverse spin asymmetry determined by the formula 

(the angle 𝛷 between the vectors 𝜂 1 and 𝜂 2 is assumed to be  𝜋) 

𝐴𝜑(𝜃, 𝜑) =
2𝑔𝐿𝑔𝑅

𝑔𝐿
2 + 𝑔𝑅

2 ⋅
𝑓2
𝑓1

, (27) 

in this case , the function 𝑓2 is equal to 

𝑓2 = (𝑥𝑍
2 − 4𝑟𝑍) 𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠 2𝜑 + (2 −

𝑦1 + 𝑟𝐻
𝑟𝑍

+
(𝑦1 + 𝑟𝑍)

2

4𝑟𝑍
2 ) (𝑥1

2 − 4𝑟𝐻) × 

× 𝑠𝑖𝑛2 𝜃1 𝑐𝑜𝑠 2𝜑 +
𝑦1 + 𝑟𝑍

𝑟𝑍
[−𝑥𝑍𝑥1 + √(𝑥𝑍

2 − 4𝑟𝑍)(𝑥1
2 − 4𝑟𝐻) × 

× (𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜃1 + 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜃1 (1 + 𝑐𝑜𝑠 2𝜑) + 2(𝑦2 − 𝑟𝑍)]. (28) 

Figure 6 shows the angular dependence of the transverse spin asymmetry 𝐴𝜑(𝜃, 𝜑) 

at 𝜑 = 0, √𝑠 =500 GeV, 𝑥1 = 0.5 and various values of the 𝑍0-boson energy: 1) 

𝑥𝑍 =0.4; 2) 𝑥𝑍 =0.45; 3) 𝑥𝑍 =0.5. As can be seen from the figure, the transverse spin 

asymmetry is positive, with the increase in the angle θ decreases and reaches a minimum 

at an angle of 𝜃 =90, and with further increase in the angle 𝜃 asymmetry 𝐴𝜑(𝜃, 𝜑) 

begins to grow. An increase in the energy 𝑥𝑍 leads to a decrease in asymmetry. 

 
Fig. 6. Dependence of the asymmetry 𝐴𝜑(𝜃, 𝜑 = 0) on the angle θ at different energies 𝑥𝑍 

 

Fig. 7 illustrates the dependence of transverse-spin asymmetry from the azimuthal 

angle 𝜑 in 𝑥𝑍 = 𝑥1 = 0.5 and different values of the polar emission angle 𝜃: 1) 𝜃 = 30°; 
2) 𝜃 = 60°; 3) 𝜃 = 90°. As follows from the figure, the transverse spin asymmetry is 

positive, with an increase in the azimuth angle 𝜑 it increases and reaches a maximum at 

𝜃 = 90°, and then with an increase in the angle 𝜑, the transverse spin asymmetry 
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decreases and reaches a minimum at 𝜃 = 180°. With further increase of the azimuthal 

angle 𝜑 from 180° to 360° graphs of the dependence of the asymmetry 𝐴𝜑(𝜃, 𝜑) of 𝜑 

angle again. With an increase in the polar angle, the transverse spin asymmetry at the 

points of maximum (𝜑 = 90°;  270) almost does not change, and at the points of 

minimum 𝜑 = 0°; 180°; 360°) decreases. 

 
Fig. 7. Dependence of the transverse spin asymmetry on the azimuthal angle 𝜑 at different angles 𝜃. 

 

Fig. 8 shows the dependence of the transverse-spin asymmetry of the energy 𝑥𝑍 at 

√𝑠 =500 GeV, 𝜑 = 0, 𝑥1 = 0.5 and various angles 𝜃: 1) 𝜃 = 30°; 2) 𝜃 = 60°; 3) 𝜃 =
90°. With an increase in the fraction of energy 𝑥𝑍, carried away by the 𝑍0-boson, the 

transverse spin asymmetry monotonically decreases, and an increase in the polar angle 𝜃 

also leads to a decrease in asymmetry. 

 
Fig. 8. Dependence of the transverse spin asymmetry  

on the energy 𝑥𝑍 at 𝜑 = 0, 𝑥1 = 0.5 and various departure angles 𝜃 
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We now proceed with the calculation of diagram d) Fig. 1, the amplitude of which 

can be written as follows: 

𝑀𝑑 = 𝑔𝑍𝑒𝑒𝑔𝑍𝑍𝐻
2

1

𝑠(1 − 𝑟𝑍)

1

𝑠(𝑦2 + 𝑟𝐻 − 𝑟𝑍)
ℓ𝜇 (𝑔𝜇𝜌 −

𝑞𝜇
′ 𝑞𝜌

′

𝑀𝑍
2 )𝑈𝜌

∗(𝑘), (29) 

where 𝑞𝜇
′ = (𝑝 − 𝑘2)𝜇 = (𝑘 + 𝑘1)𝜇 is the total 4-momentum of 𝑍0- and Higgs bosons. 

Based on this amplitude, the following expression was obtained for the differential 

effective cross section of the reaction 𝑒−𝑒+ → 𝐻𝐻𝑍0 (the 𝑒−𝑒+-pair is arbitrarily 

polarized): 

𝑑3𝜎𝑑(𝜆1, 𝜆2, 𝜂1, 𝜂2)

𝑑𝑥𝑍𝑑𝑥1𝑑𝛺
=

√2𝐺𝐹
3𝑀𝑍

6

128𝜋4𝑠(1 − 𝑟𝑍)2
⋅

𝑟𝑍
(𝑦2 + 𝑟𝐻 − 𝑟𝑍)2

× 

 × {[(𝑔𝐿
2(1 − 𝜆1)(1 + 𝜆2) + 𝑔𝑅

2(1 + 𝜆1)(1 − 𝜆2)] ⋅ 𝐹1 + 2𝑔𝐿𝑔𝑅𝜂1𝜂2𝐹2]}. (30) 

Here the functions 𝐹1 and 𝐹2 are obtained from the functions 𝑓1 and 𝑓2 (they are given by 

formulas (25) and (26)) by substitutions 

 𝜃1 → 𝜃2, 𝑥1 → 𝑥2, 𝑦1 → 𝑦2.  

Consider the interference of diagrams c) and d) Fig. 1 

𝑀𝑐
+𝑀𝑑 + 𝑀𝑑

+𝑀𝑐 = 2
𝑔𝑍𝑒𝑒

2

𝑠2(1 − 𝑟𝑍)2

𝑔𝑍𝑍𝐻
4

𝑠2(𝑦1 + 𝑟𝐻 − 𝑟𝑍)(𝑦2 + 𝑟𝐻 − 𝑟𝑍)
× 

× 𝐿𝜇𝜈 [−𝑔𝜇𝜈 +
𝑘𝜇𝑘𝜈

𝑀𝑍
2 +

𝑘1𝜇𝑘1𝜈

𝑀𝑍
2 +

𝑘2𝜇𝑘2𝜈

𝑀𝑍
2 −

𝑘𝜇𝑘1𝜈 + 𝑘1𝜇𝑘𝜈

2𝑀𝑍
2

𝑦2 − 𝑟𝑍
2𝑟𝑍

− 

−
𝑘𝜇𝑘2𝜈 + 𝑘2𝜇𝑘𝜈

2𝑀𝑍
2

𝑦1 − 𝑟𝑍
2𝑟𝑍

−
𝑘1𝜇𝑘2𝜈 + 𝑘2𝜇𝑘1𝜈

2𝑀𝑍
2

1

2𝑟𝑍
(𝑦𝑍 + 𝑟𝑍 − 2𝑟𝐻 −

𝑦1 − 𝑟𝑍
2𝑟𝑍

(𝑦2 − 𝑟𝑍))] = 

= 2
𝑔𝑍𝑒𝑒

2

𝑠2(1 − 𝑟𝑍)2
⋅

𝑔𝑍𝑍𝐻
4

𝑠2(𝑦1 + 𝑟𝐻 − 𝑟𝑍)
⋅

2

(𝑦2 + 𝑟𝐻 − 𝑟𝑍)
× 

× {(𝑔𝐿
2 + 𝑔𝑅

2) [(𝑝1 ⋅ 𝑝2) − 𝑚2(𝑠1 ⋅ 𝑠2) +
2

𝑀𝑍
2 ((𝑝1 ⋅ 𝑘)(𝑝2 ⋅ 𝑘) − 𝑚2(𝑘 ⋅ 𝑠1)(𝑘 ⋅ 𝑠2))] + 

+(𝑔𝐿
2 − 𝑔𝑅

2)𝑚 ⋅ [(𝑝1 ⋅ 𝑠2) − (𝑝2 ⋅ 𝑠1) +
2

𝑀𝑍
2 ((𝑝1 ⋅ 𝑘)(𝑘 ⋅ 𝑠2) − (𝑝2 ⋅ 𝑘)(𝑘 ⋅ 𝑠1))] + 

+2𝑔𝐿𝑔𝑅 [(𝑝1 ⋅ 𝑝2)(𝑠1 ⋅ 𝑠2) − (𝑝1 ⋅ 𝑠2)(𝑝2 ⋅ 𝑠1) +
2

𝑀𝑍
2 ((𝑝1 ⋅ 𝑠2)(𝑘 ⋅ 𝑠1)(𝑝2 ⋅ 𝑘) + 

+(𝑝2 ⋅ 𝑠1)(𝑘 ⋅ 𝑠2)(𝑝1 ⋅ 𝑘) (𝑝1 ⋅ 𝑝2)(𝑘 ⋅ 𝑠1)(𝑘 ⋅ 𝑠2) − (𝑠1 ⋅ 𝑠2)(𝑝1 ⋅ 𝑘)(𝑝2 ⋅ 𝑘))] + 

+
1

𝑀𝑍
2
[(𝑔𝐿

2 + 𝑔𝑅
2)(2(𝑝1 ⋅ 𝑘1)(𝑝2 ⋅ 𝑘1) − 𝑀𝐻

2(𝑝1 ⋅ 𝑝2) − 𝑚2(2(𝑘1 ⋅ 𝑠1)(𝑘1 ⋅ 𝑠2) − 

−𝑀𝐻
2(𝑠1 ⋅ 𝑠2))) + (𝑔𝐿

2 − 𝑔𝑅
2)𝑚 ⋅ (2(𝑝1 ⋅ 𝑘1)(𝑘1 ⋅ 𝑠2) − 𝑀𝐻

2(𝑝1 ⋅ 𝑠2) − 

−2(𝑝2 ⋅ 𝑘1)(𝑘1 ⋅ 𝑠1) + 𝑀𝐻
2(𝑝2 ⋅ 𝑠1)) + 2𝑔𝐿𝑔𝑅((𝑝1 ⋅ 𝑠2)(2(𝑘1 ⋅ 𝑠1)(𝑝2 ⋅ 𝑘1) − 

−𝑀𝐻
2(𝑝2 ⋅ 𝑠1)) + 2(𝑝2 ⋅ 𝑠1)(𝑝1 ⋅ 𝑘1)(𝑘1 ⋅ 𝑠2) − (𝑝1 ⋅ 𝑝2)(2(𝑘1 ⋅ 𝑠1)(𝑘1 ⋅ 𝑠2) − 

−𝑀𝐻
2(𝑠1 ⋅ 𝑠2)) − 2(𝑠1 ⋅ 𝑠2)(𝑝1 ⋅ 𝑘1)(𝑝2 ⋅ 𝑘1)) + (𝑘1 → 𝑘2)] + 
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+
𝑦2 − 𝑟𝑍

2𝑟𝑍
⋅

1

𝑀𝑍
2 [(𝑔𝐿

2 + 𝑔𝑅
2)((𝑝1 ⋅ 𝑘)(𝑝2 ⋅ 𝑘1) + (𝑝1 ⋅ 𝑘1)(𝑝2 ⋅ 𝑘) − (𝑝1 ⋅ 𝑝2)(𝑘 ⋅ 𝑘1) − 

−𝑚2((𝑘 ⋅ 𝑠1)(𝑘1 ⋅ 𝑠2) + (𝑘1 ⋅ 𝑠1)(𝑘 ⋅ 𝑠2) − (𝑠1 ⋅ 𝑠2)(𝑘 ⋅ 𝑘1))) + 

+(𝑔𝐿
2 − 𝑔𝑅

2)𝑚((𝑝1 ⋅ 𝑘)(𝑘 ⋅ 𝑠2) + (𝑝1 ⋅ 𝑘1)(𝑘 ⋅ 𝑠2) − (𝑝1 ⋅ 𝑠2)(𝑘 ⋅ 𝑘1) − 

−(𝑘 ⋅ 𝑠1)(𝑝2 ⋅ 𝑘1) − (𝑝2 ⋅ 𝑘)(𝑘 ⋅ 𝑠1) + (𝑝2 ⋅ 𝑠1)(𝑘 ⋅ 𝑘1)) + 

+2𝑔𝐿𝑔𝑅((𝑝1 ⋅ 𝑠2)((𝑘 ⋅ 𝑠1)(𝑝2 ⋅ 𝑘1) + (𝑘1 ⋅ 𝑠1)(𝑘 ⋅ 𝑝2) − (𝑝2 ⋅ 𝑠1)(𝑘 ⋅ 𝑘1)) − 

−(𝑝2 ⋅ 𝑠1)((𝑝1 ⋅ 𝑘)(𝑘1 ⋅ 𝑠2) + (𝑝1 ⋅ 𝑘1)(𝑘 ⋅ 𝑠2)) − (𝑝1 ⋅ 𝑝2)((𝑘 ⋅ 𝑠1)(𝑘1 ⋅ 𝑠2) + 

+(𝑘 ⋅ 𝑠2)(𝑘1 ⋅ 𝑠1) − (𝑠1 ⋅ 𝑠2)(𝑘 ⋅ 𝑘1)) − (𝑠1 ⋅ 𝑠2)((𝑝1 ⋅ 𝑘)(𝑝2 ⋅ 𝑘1) + 

+(𝑝2 ⋅ 𝑘)(𝑝1 ⋅ 𝑘1)))] −
𝑦1 − 𝑟𝑍

2𝑟𝑍
⋅

1

𝑀𝑍
2 [𝑘1 → 𝑘2] − 

−
1

2𝑟𝑍
(𝑦𝑍 + 𝑟𝑍 − 2𝑟𝐻 −

(𝑦1 − 𝑟𝑍)(𝑦2 − 𝑟𝑍)

𝑟𝑍
) ⋅

1

𝑀𝑍
2 ⋅ [(𝑔𝐿

2 + 𝑔𝑅
2)((𝑝1 ⋅ 𝑘1)(𝑝2 ⋅ 𝑘2) + 

+(𝑝1 ⋅ 𝑘2)(𝑝2 ⋅ 𝑘1) − (𝑝1 ⋅ 𝑝2)(𝑘1 ⋅ 𝑘2) − 𝑚2((𝑘1 ⋅ 𝑠1)(𝑘2 ⋅ 𝑠3) + (𝑘1 ⋅ 𝑠2)(𝑘2 ⋅ 𝑠1) − 

−(𝑠1 ⋅ 𝑠2)(𝑘1 ⋅ 𝑘2))) + (𝑔𝐿
2 − 𝑔𝑅

2)𝑚((𝑝1 ⋅ 𝑘1)(𝑘2 ⋅ 𝑠2) − (𝑝1 ⋅ 𝑘2)(𝑘1 ⋅ 𝑠2) − 

−(𝑝1 ⋅ 𝑠2)(𝑘1 ⋅ 𝑘2) − (𝑘1 ⋅ 𝑠1)(𝑘2 ⋅ 𝑝2) − (𝑘2 ⋅ 𝑠1)(𝑘1 ⋅ 𝑝2) + (𝑝2 ⋅ 𝑠1)(𝑘1 ⋅ 𝑘2)) + 

+2𝑔𝐿𝑔𝑅((𝑝1 ⋅ 𝑠2)((𝑘1 ⋅ 𝑠1)(𝑘2 ⋅ 𝑝2) + (𝑘2 ⋅ 𝑠1)(𝑘1 ⋅ 𝑝2) − (𝑝2 ⋅ 𝑠1)(𝑘1 ⋅ 𝑘2) + 

+(𝑝2 ⋅ 𝑠1)((𝑘1 ⋅ 𝑝1)(𝑘2 ⋅ 𝑠2) + (𝑘2 ⋅ 𝑝1)(𝑘1 ⋅ 𝑠2)) − (𝑝1 ⋅ 𝑝2)((𝑘1 ⋅ 𝑠1)(𝑘2 ⋅ 𝑠2) + 

+(𝑘1 ⋅ 𝑠2)(𝑘2 ⋅ 𝑠1) − (𝑠1 ⋅ 𝑠2)(𝑘1 ⋅ 𝑘2)) − (𝑠1 ⋅ 𝑠2)((𝑝1 ⋅ 𝑘1)(𝑝2 ⋅ 𝑘2) + 

+(𝑝1 ⋅ 𝑘2)(𝑝2 ⋅ 𝑘1)))]}. (31) 

Here the sign 𝑘1 → 𝑘2 means that this expression is obtained from the previous expression 

by replacing the 4-momentum 𝑘1 with 𝑘2. 

Then, based on this matrix element for the contribution to the cross section of the 

process 𝑒−𝑒+ → 𝐻𝐻𝑍0 interference diagrams c) and d), we obtain the expression (angle 

Φ accepted 𝜋) 

𝑑3𝜎𝑐,𝑑
(inter.)

𝑑𝑥𝑍𝑑𝑥1𝑑𝛺
=

√2

64𝜋4
⋅

𝐺𝐹
3𝑀𝑍

6

𝑠(1 − 𝑟𝑍)
2
⋅

𝑟𝑍
(𝑦1 + 𝑟𝐻 − 𝑟𝑍)(𝑦2 + 𝑟𝐻 − 𝑟𝑍)

× 

× {𝑔𝐿
2(1 𝜆1)(1 + 𝜆2) + 𝑔𝑅

2(1 + 𝜆1)(1 − 𝜆2)] [𝑥𝑍
2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃) +  

+(𝑥1
2 4𝑟𝐻)𝑠𝑖𝑛2 𝜃1 + (𝑥2

2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃2 − 

−
𝑦2 − 𝑟𝑍

2𝑟𝑍
(𝑥𝑍𝑥1 − √(𝑥𝑍

2 − 4𝑟𝑍)(𝑥1
2 − 4𝑟𝐻) ⋅ 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜃1 − 2(𝑦2 − 𝑟𝑍)) − 

−
𝑦1 − 𝑟𝑍

2𝑟𝑍
(𝑥𝑍𝑥2 − √(𝑥𝑍

2 − 4𝑟𝑍)(𝑥2
2 − 4𝑟𝐻) ⋅ 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜃2 − 2(𝑦1 − 𝑟𝑍)) − 

−
1

2𝑟𝑍
(𝑥1𝑥2 − √(𝑥1

2 − 4𝑟𝐻)(𝑥2
2 − 4𝑟𝐻) ⋅ 𝑐𝑜𝑠 𝜃1 𝑐𝑜𝑠 𝜃2 − 2(𝑦𝑍 + 𝑟𝑍 − 2𝑟𝐻) × 

× (𝑦𝑍 + 𝑟𝑍 − 2𝑟𝐻 −
1

2𝑟𝑍
(𝑦1 − 𝑟𝑍)(𝑦2 − 𝑟𝑍))] + 2𝑔𝐿𝑔𝑅𝜂1𝜂2 [((𝑥𝑍

2 4𝑟𝑍) 𝑠𝑖𝑛2 𝜃 + 
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+(𝑥1
2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃1 − (𝑥2

2 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃2)𝑐𝑜𝑠 2𝜑 + 

+
𝑦2 − 𝑟𝑍

2𝑟𝑍
(𝑥𝑍𝑥1 − √(𝑥𝑍

2 − 4𝑟𝑍)(𝑥1
2 − 4𝑟𝐻) 𝑐𝑜𝑠( 𝜃 − 𝜃1) − 2(𝑦2 − 𝑟𝑍)) − 

−√(𝑥𝑍
2 − 4𝑟𝑍)(𝑥1

2 − 4𝑟𝐻) ⋅ 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜃1 𝑐𝑜𝑠( 2𝜑) + 

+
𝑦1 − 𝑟𝑍

2𝑟𝑍
(𝑥𝑍𝑥2 − √(𝑥𝑍

2 − 4𝑟𝑍)(𝑥2
2 − 4𝑟𝐻) ⋅ 𝑐𝑜𝑠( 𝜃 − 𝜃2) − 2(𝑦1 − 𝑟𝑍)) − 

−√(𝑥𝑍
2 − 4𝑟𝑍)(𝑥2

2 − 4𝑟𝐻) 𝑐𝑜𝑠( 𝜃1 − 𝜃2) − 2(𝑦𝑍 + 𝑟𝑍 − 2𝑟𝐻) − 

√(𝑥1
2 − 4𝑟𝐻)(𝑥2

2 − 4𝑟𝐻) ⋅ 𝑠𝑖𝑛 𝜃1 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠( 2𝜑))]}. (32) 

Figure 9 shows the angular dependence of the differential effective cross section of 

the process 𝑒−𝑒+ → 𝐻𝐻𝑍0 at √𝑠 =500 GeV, 𝑥1 =0.5, 𝑥𝑊 =0.2315 and various energy 

values of the  𝑍0-boson 𝑥𝑍: 1) 𝑥𝑍 =0.5; 2) 𝑥𝑍 =0.6; 3) 𝑥𝑍 =0.7. As follows from the figure, 

with an increase in the angle 𝜃, the differential effective cross section increases and 

reaches a maximum at 𝜃 = 90°, a further increase in the angle leads to a decline in the 

effective cross section. An increase in the fraction of energy 𝑥𝑍 carried away by the 𝑍0 

boson leads to a decrease in the differential effective cross section. 

 

Fig. 9. Angular dependence of the reaction cross section 𝑒−𝑒+ → 𝐻𝐻𝑍0 at different 𝑥𝑍 

 

Figure 10 illustrates the dependence of the differential effective cross section on the 

variable 𝑥𝑍 at √𝑠 =500 GeV, 𝑥1 =0.5 and various values of the departure angle 𝜃: 1) 𝜃 =
30°; 2) 𝜃 = 90°. As can be seen from the figure, with an increase in the variable 𝑥𝑍, the 

effective cross section increases and reaches a maximum at 𝑥𝑍= 0.475, and a further 

increase in the energy carried away by the 𝑍0-boson leads to a decrease in the effective 

cross section. At the maximum, the effective cross-section reaches the value 

𝑑3𝜎 𝑑𝑥𝑍𝑑𝑥1𝑑𝛺⁄ =45.75 fbarn/sterad at 𝜃 = 90°. 
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4.     Interference calculation diagram a), b) and c), d) 

 

In sections 2 and 3, we calculated the differential effective cross sections of the      

process 𝑒−𝑒+ → 𝐻𝐻𝑍0 taking into account the Feynman diagrams a), b) and c), d) Fig. 

1. Here we also consider the interference of these diagrams. 

During annihilation of an arbitrarily polarized electron-positron pair, the following 

expressions are obtained for the interference of these diagrams: 

 

 
Fig. 10. Energy dependence of the reaction cross section 𝑒−𝑒+ → 𝐻𝐻𝑍0 at different θ 

 

𝑑3𝜎𝑎,𝑐
(inter.)

𝑑𝑥𝑍𝑑𝑥1𝑑𝛺
=

3√2

128𝜋4
⋅

𝐺𝐹
3𝑀𝑍

6

𝑠(1 − 𝑟𝑍)
2
⋅

𝑟𝐻
𝑦𝑍 + 𝑟𝑍 − 𝑟𝐻

⋅
1

𝑦1 + 𝑟𝐻 − 𝑟𝑍
× 

× {−[𝑔𝐿
2(1 − 𝜆1)(1 + 𝜆2) + 𝑔𝑅

2(1 + 𝜆1)(1 − 𝜆2)][𝑥𝑍
2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃) + 

+(𝑥1
2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃1 +

𝑦1 + 𝑟𝑍
2𝑟𝑍

⋅ (𝑥𝑍𝑥1 − √(𝑥𝑍
2 − 4𝑟𝑍)(𝑥1

2 − 4𝑟𝐻) 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜃1 − 

−2(𝑦2 − 𝑟𝑍))] + 2𝑔𝐿𝑔𝑅𝜂1𝜂2[−(𝑥𝑍
2 − 4𝑟𝑍) 𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠( 2𝜑) − 

−(𝑥1
2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃1 𝑐𝑜𝑠( 2𝜑) +

𝑦1 + 𝑟𝑍
2𝑟𝑍

(𝑥𝑍𝑥1 − √(𝑥𝑍
2 − 4𝑟𝑍)(𝑥1

2 − 4𝑟𝐻) 𝑐𝑜𝑠( 𝜃 − 𝜃1) − 

−2(𝑦2 − 𝑟𝑍) − √(𝑥𝑍
2 − 4𝑟𝑍)(𝑥1

2 − 4𝑟𝐻) 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜃1 𝑐𝑜𝑠( 2𝜑))]}; (33) 

 

𝑑3𝜎𝑎,𝑑
(inter.)

𝑑𝑥𝑍𝑑𝑥1𝑑𝛺
=

3√2

128𝜋4
⋅

𝐺𝐹
3𝑀𝑍

6

𝑠(1 − 𝑟𝑍)
2
⋅

𝑟𝐻
𝑦𝑍 + 𝑟𝑍 − 𝑟𝐻

⋅
1

𝑦2 + 𝑟𝐻 − 𝑟𝑍
× 

× {−[𝑔𝐿
2(1 − 𝜆1)(1 + 𝜆2) + 𝑔𝑅

2(1 + 𝜆1)(1 − 𝜆2)][𝑥𝑍
2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃) + 

+(𝑥2
2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃2 +

𝑦2 + 𝑟𝑍
2𝑟𝑍

⋅ (𝑥𝑍𝑥2 − √(𝑥𝑍
2 − 4𝑟𝑍)(𝑥2

2 − 4𝑟𝐻) 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜃2 − 

−2(𝑦1 − 𝑟𝑍))] + 2𝑔𝐿𝑔𝑅𝜂1𝜂2[−((𝑥𝑍
2 − 4𝑟𝑍) 𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠( 2𝜑) − 

0
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−(𝑥2
2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃2) 𝑐𝑜𝑠( 2𝜑) +

𝑦2 + 𝑟𝑍
2𝑟𝑍

(𝑥𝑍𝑥2 − √(𝑥𝑍
2 − 4𝑟𝑍)(𝑥2

2 − 4𝑟𝐻) 𝑐𝑜𝑠( 𝜃 − 𝜃2) − 

−2(𝑦1 − 𝑟𝑍)) − √(𝑥𝑍
2 − 4𝑟𝑍)(𝑥2

2 − 4𝑟𝐻) 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠( 2𝜑))]}; (34) 

 

𝑑3𝜎𝑏,𝑐
(inter)

𝑑𝑥𝑍𝑑𝑥1𝑑𝛺
=

√2𝐺𝐹
3𝑀𝑍

6

256𝜋4
⋅

1

𝑠(1 − 𝑟𝑍)
2
⋅

1

𝑦1 + 𝑟𝐻 − 𝑟𝑍
⋅
𝑟𝐻
𝑟𝑍

× 

× {−[𝑔𝐿
2(1 − 𝜆1)(1 + 𝜆2) + 𝑔𝑅

2(1 + 𝜆1)(1 − 𝜆2)][𝑥𝑍
2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃) + 

+(𝑥1
2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃1 +

𝑦2 + 𝑟𝑍
2𝑟𝑍

(𝑥𝑍𝑥1 − √(𝑥𝑍
2 − 4𝑟𝑍)(𝑥1

2 − 4𝑟𝐻) 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜃1 − 

−2(𝑦2 − 𝑟𝑍))] + 2𝑔𝐿𝑔𝑅𝜂1𝜂2[−((𝑥𝑍
2 − 4𝑟𝑍) 𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠( 2𝜑) − (𝑥1

2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃1) × 

× 𝑐𝑜𝑠( 2𝜑) +
𝑦1 + 𝑟𝑍

2𝑟𝑍
(𝑥𝑍𝑥1 − √(𝑥𝑍

2 − 4𝑟𝑍)(𝑥1
2 − 4𝑟𝐻) 𝑐𝑜𝑠( 𝜃 − 𝜃1) − 2(𝑦2 − 𝑟𝑍)) − 

−√(𝑥𝑍
2 − 4𝑟𝑍)(𝑥1

2 − 4𝑟𝐻) 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜃1 𝑐𝑜𝑠( 2𝜑))]}; (35) 

 

𝑑3𝜎𝑏,𝑑
(inter.)

𝑑𝑥𝑍𝑑𝑥1𝑑𝛺
=

√2𝐺𝐹
3𝑀𝑍

6

256𝜋4
⋅

1

𝑠(1 − 𝑟𝑍)
2
⋅

1

𝑦2 + 𝑟𝐻 − 𝑟𝑍
⋅
𝑟𝐻
𝑟𝑍

× 

× {−[𝑔𝐿
2(1 − 𝜆1)(1 + 𝜆2) + 𝑔𝑅

2(1 + 𝜆2)(1 − 𝜆1)][𝑥𝑍
2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃) + 

+(𝑥2
2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃2 +

𝑦2 + 𝑟𝑍
2𝑟𝑍

⋅ (𝑥𝑍𝑥2 − √(𝑥𝑍
2 − 4𝑟𝑍)(𝑥2

2 − 4𝑟𝐻) 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜃2 − 

−2(𝑦1 − 𝑟𝑍))] + 2𝑔𝐿𝑔𝑅𝜂1𝜂2[(−(𝑥𝑍
2 − 4𝑟𝑍) 𝑠𝑖𝑛2 𝜃 − (𝑥2

2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃2) 𝑐𝑜𝑠( 2𝜑) + 

+
𝑦2 + 𝑟𝑍

2𝑟𝑍
(𝑥𝑍𝑥2 − √(𝑥𝑍

2 − 4𝑟𝑍)(𝑥2
2 − 4𝑟𝐻) 𝑐𝑜𝑠( 𝜃 − 𝜃2) − 2(𝑦1 − 𝑟𝐻)) − 

−√(𝑥𝑍
2 − 4𝑟𝑍)(𝑥2

2 − 4𝑟𝐻) 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠( 2𝜑))]}. (36) 

   

Thus, we calculated the differential effective cross section of the process 𝑒−𝑒+ →
𝐻𝐻𝑍0 taking into account all possible Feynman diagrams (Fig. 1, a, b, c, d) and arbitrary 

polarization states of the electron-positron pair. The differential effective cross section of 

the process under consideration consists of sections of diagrams a), b) (formula (14)), 

sections of diagrams c), d) and their interference (formulas (24), (30) and (32)), as well 

as interference of diagrams a) and c), a) and d), b) and c), b) and d) (formulas (33)-(36)). 

We estimate the left-right and transverse spin asymmetries 𝐴𝐿𝑅 and 𝐴𝜑(𝑥𝑍 , 𝜃) 

taking into account all Feynman diagrams shown in Fig. 1. All formulas of the differential 

effective cross sections of helicities an electron and a positron are included in the form 

 [𝑔𝐿
2(1 − 𝜆1)(1 + 𝜆2) + 𝑔𝑅

2(1 + 𝜆1)(1 − 𝜆2)],  

therefore, the left-right or longitudinal spin asymmetry due to the longitudinal 

polarization of the electron is expressed by the formula 

𝐴𝐿𝑅 =
𝑔𝐿

2 − 𝑔𝑅
2

𝑔𝐿
2 + 𝑔𝑅

2 . 

As for the transverse spin asymmetry 𝐴𝜑(𝑥𝑍, 𝜃), we estimate it at 𝑥1 = 0.5 by the 
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formula 

𝐴𝜙(𝑥𝑍, 𝜃) =
2𝑔𝐿𝑔𝑅

𝑔𝐿
2 + 𝑔𝑅

2 ⋅
𝜓2

𝜓1
, (37) 

where functions 𝜓1 and 𝜓2 are defined as 

𝜓1 =
1

4𝑟𝑍
(1 −

3𝑟𝐻
𝑦𝑍 + 𝑟𝑍 − 𝑟𝐻

)
2

[𝑥𝑍
2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃)] + 

+
𝑟𝑍

(𝑦1 + 𝑟𝐻 − 𝑟𝑍)
2
⋅ [𝑥𝑍

2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃) +
𝑦1 + 𝑟𝑍

𝑟𝑍
(𝑥𝑍𝑥1 − 2(𝑦2 − 𝑟𝑍))] + 

+
𝑟𝑍

(𝑦2 + 𝑟𝐻 − 𝑟𝑍)
2
⋅ [𝑥𝑍

2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃) + (2 −
𝑦1 + 𝑟𝐻

𝑟𝑍
+

(𝑦1 + 𝑟𝑍)
2

4𝑟𝑍
2 ) × 

× (𝑥2
2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃2 +

𝑦2 + 𝑟𝑍
𝑟𝑍

⋅ (𝑥𝑍𝑥2 − √(𝑥𝑍
2 − 4𝑟𝑍)(𝑥2

2 − 4𝑟𝐻) 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜃2 − 

−2(𝑦1 𝑟𝑍))] +
2

𝑦1 + 𝑟𝐻 − 𝑟𝑍
⋅

𝑟𝑍
(𝑦2 + 𝑟𝐻 − 𝑟𝑍)

⋅ [𝑥𝑍
2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃) +  

+(𝑥2
2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃2 −

𝑦2 − 𝑟𝑍
2𝑟𝑍

(𝑥𝑍𝑥1 − 2(𝑦2 − 𝑟𝑍)) −
𝑦1 − 𝑟𝑍

2𝑟𝑍
⋅ (𝑥𝑍𝑥2 − 

−√(𝑥𝑍
2 − 4𝑟𝑍)(𝑥2

2 − 4𝑟𝐻) 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜃2 − 2(𝑦1 − 𝑟𝑍)) −
1

2𝑟𝑍
(𝑥1𝑥2 − 2(𝑦𝑍 + 𝑟𝑍 − 2𝑟𝐻)) × 

× (𝑦𝑍 + 𝑟𝑍 − 2𝑟𝐻 −
1

2𝑟𝑍
(𝑦1 − 𝑟𝑍)(𝑦2 − 𝑟𝑍))] −

3

𝑦𝑍 + 𝑟𝑍 − 𝑟𝐻
⋅

𝑟𝐻
𝑦1 + 𝑟𝐻 − 𝑟𝑍

× 

× [𝑥𝑍
2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃) +

𝑦1 + 𝑟𝑍
2𝑟𝑍

(𝑥𝑍𝑥1 − 2(𝑦2 − 𝑟𝑍))] − 

−
3

𝑦𝑍 + 𝑟𝑍 − 𝑟𝐻
⋅

𝑟𝐻
𝑦2 + 𝑟𝐻 − 𝑟𝑍

[𝑥𝑍
2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃) + (𝑥2

2 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃2 + 

+
𝑦2 + 𝑟𝑍

2𝑟𝑍
(𝑥𝑍𝑥2 − √(𝑥𝑍

2 − 4𝑟𝑍)(𝑥2
2 − 4𝑟𝐻) 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜃2 − 2(𝑦1 − 𝑟𝑍))] − 

−
𝑟𝐻
2𝑟𝑍

⋅
1

𝑦1 + 𝑟𝐻 − 𝑟𝑍
[𝑥𝑍

2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃) +
𝑦1 + 𝑟𝑍

2𝑟𝑍
(𝑥𝑍𝑥1 − 2(𝑦2 − 𝑟𝐻))] − 

−
𝑟𝐻
2𝑟𝑍

⋅
1

𝑦2 + 𝑟𝐻 − 𝑟𝑍
[𝑥𝑍

2 𝑠𝑖𝑛2 𝜃 + 4𝑟𝑍(1 + 𝑐𝑜𝑠2 𝜃) + (𝑥2
2 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃2 + 

+
𝑦2 + 𝑟𝑍

2𝑟𝑍
⋅ (𝑥𝑍𝑥2 − √(𝑥𝑍

2 − 4𝑟𝑍)(𝑥2
2 − 4𝑟𝐻) 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜃2 − 2(𝑦1 − 𝑟𝑍))] ; (38) 

 

𝜓2 =
1

4𝑟𝑍
(1 −

3𝑟𝐻
𝑦𝑍 + 𝑟𝑍 − 𝑟𝐻

)
2

[(𝑥𝑍
2 − 4𝑟𝑍) 𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠 2𝜑 +

𝑟𝑍
(𝑦1 + 𝑟𝐻 − 𝑟𝑍)

2
× 

× [(𝑥𝑍
2 − 4𝑟𝑍) 𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠 2𝜑 +

𝑦1 + 𝑟𝑍
𝑟𝑍

(−𝑥𝑍𝑥1 + 2(𝑦2 − 𝑟𝑍))] +
𝑟𝑍

(𝑦2 + 𝑟𝐻 − 𝑟𝑍)
2
× 

× [(𝑥𝑍
2 − 4𝑟𝑍) 𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠 2𝜑 + (2 −

𝑦1 + 𝑟𝐻
𝑟𝑍

+
(𝑦1 + 𝑟𝑍)

2

4𝑟𝑍
2 ) (𝑥2

2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃2 𝑐𝑜𝑠 2𝜑 + 

+
𝑦2 + 𝑟𝑍

𝑟𝑍
⋅ (−𝑥𝑍𝑥2 + √(𝑥𝑍

2 − 4𝑟𝑍)(𝑥2
2 − 4𝑟𝐻)(𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜃2 + 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜃2 × 

× (1 + 𝑐𝑜𝑠 2𝜑) + 2(𝑦1 − 𝑟𝑍))] +
2

𝑦1 + 𝑟𝐻 − 𝑟𝑍
⋅

𝑟𝑍
𝑦2 + 𝑟𝐻 − 𝑟𝑍

× 
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× [𝑐𝑜𝑠 2𝜑((𝑥𝑍
2 4𝑟𝑍) 𝑠𝑖𝑛2 𝜃 − (𝑥2

2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃2) +
𝑦2 − 𝑟𝑍

2𝑟𝑍
× 

× (𝑥𝑍𝑥1 − 2(𝑦2 − 𝑟𝑍)) +
𝑦1 − 𝑟𝑍

2𝑟𝑍
⋅ (𝑥𝑍𝑥2 − √(𝑥𝑍

2 − 4𝑟𝑍)(𝑥2
2 − 4𝑟𝐻) 𝑐𝑜𝑠( 𝜃 − 𝜃2) − 

−2(𝑦1 − 𝑟𝑍) − √(𝑥𝑍
2 − 4𝑟𝑍)(𝑥2

2 − 4𝑟𝐻) ⋅ 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 2𝜑) +
1

2𝑟𝑍
× 

× (𝑦𝑍 + 𝑟𝑍 − 2𝑟𝐻 −
(𝑦1 − 𝑟𝑍)(𝑦2 − 𝑟𝑍)

2𝑟𝑍
) ⋅ (𝑥1𝑥2 − 2(𝑦𝑍 + 𝑟𝑍 − 2𝑟𝐻))] +

3

𝑦𝑍 + 𝑟𝑍 − 𝑟𝐻
× 

×
𝑟𝐻

𝑦1 + 𝑟𝐻 − 𝑟𝑍
⋅ [−(𝑥𝑍

2 − 4𝑟𝑍) 𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠 2𝜑 +
𝑦1 + 𝑟𝑍

2𝑟𝑍
(𝑥𝑍𝑥1 − 2(𝑦2 − 𝑟𝑍))] + 

+
3

𝑦𝑍 + 𝑟𝑍 − 𝑟𝐻
⋅

𝑟𝐻
𝑦2 + 𝑟𝑍 − 𝑟𝐻

⋅ [𝑐𝑜𝑠 2𝜑( (𝑥𝑍
2 − 4𝑟𝑍) 𝑠𝑖𝑛2 𝜃 − (𝑥2

2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃2) + 

+
𝑦2 + 𝑟𝑍

2𝑟𝑍
(𝑥𝑍𝑥2 − √(𝑥𝑍

2 − 4𝑟𝑍)(𝑥2
2 − 4𝑟𝐻) 𝑐𝑜𝑠( 𝜃 − 𝜃2) − 2(𝑦1 − 𝑟𝑍) − 

√(𝑥𝑍
2 − 4𝑟𝑍)(𝑥2

2 − 4𝑟𝐻) ⋅ 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 2𝜑)] + 

+
𝑟𝐻
2𝑟𝑍

⋅
1

𝑦1 + 𝑟𝐻 − 𝑟𝑍
[−(𝑥𝑍

2 − 4𝑟𝑍) 𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠 2𝜙 +
𝑦1 + 𝑟𝑍

2𝑟𝑍
(𝑥𝑍𝑥1 − 2(𝑦2 − 𝑟𝑍))] + 

+
𝑟𝐻
2𝑟𝑍

⋅
1

𝑦2 + 𝑟𝐻 − 𝑟𝑍
[𝑐𝑜𝑠 2𝜑(−(𝑥𝑍

2 − 4𝑟𝑍) 𝑠𝑖𝑛2 𝜃 − (𝑥2
2 − 4𝑟𝐻) 𝑠𝑖𝑛2 𝜃2] + 

 

+
𝑦2 + 𝑟𝑍

2𝑟𝑍
(𝑥𝑍𝑥2 − √(𝑥𝑍

2 − 4𝑟𝑍)(𝑥2
2 − 4𝑟𝐻) 𝑐𝑜𝑠( 𝜃 − 𝜃2) − 2(𝑦1 − 𝑟𝐻) − 

−√(𝑥𝑍
2 − 4𝑟𝑍)(𝑥2

2 − 4𝑟𝐻) ⋅ 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜃2 𝑐𝑜𝑠 2𝜑)]. (39) 

When obtaining the expressions of the functions 𝜓1 and 𝜓2, it is taken into account 

that, in the case of 𝑥1 = 0.5𝑥1
2 − 4𝑟𝐻 = 0, and the angle 𝜃2 between the directions of the 

electron momentums and the second Higgs boson with 4-momentum 𝑘2 is associated with 

the angle 𝜃 by the ratio 

𝑐𝑜𝑠 𝜃2 = −√
𝑥𝑍

2 − 4𝑟𝑍

𝑥2
2 − 4𝑟𝐻

𝑐𝑜𝑠 𝜃. 

Figure 11 shows the dependence of the transverse spin asymmetry 𝐴𝜑(𝑥𝑍, 𝜃) on the 

polar angle θ at different energy values 𝑥𝑍: 1) 𝑥𝑍 = 0.55; 2) 𝑥𝑍 =0.60; 3) 𝑥𝑍 =0.65. As 

can be seen from the figure, the transverse spin asymmetry is positive and at 𝑥𝑍 =0.55 

and  𝑥𝑍 =0.60  with an increase in the angle θ it decreases and reaches a minimum at an 

angle 𝜃 = 90°, and with a further increase in the angle the value of the asymmetry 

increases. However, at 𝑥𝑍=0.65, an inverse angular dependence is observed, that with an 

increase in the angle 𝜃, the transverse spin asymmetry increases and reaches a maximum 

at 𝜃 =90, and with a further increase in the angle, the asymmetry decreases. 

Fig. 12 illustrates the dependence of transverse-spin asymmetry from the proportion 

of energy 𝑥𝑍, entrained 𝑍0-boson at different angles 𝜃: 1) 𝜃 = 45°; 2) 𝜃 = 60°; 3) 𝜃 =
90°. It follows from the figure that with increasing 𝑥𝑍, the transverse spin asymmetry 

monotonically decreases. 

Averaging over the polarization states of 𝑒−𝑒+-pairs for the differential effective 
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cross section of the reaction 𝑒−𝑒+ → 𝐻𝐻𝑍0 we have the formula (all Feynman diagrams 

are taken into account) 

𝑑3𝜎

𝑑𝑥𝑍𝑑𝑥1𝑑𝛺
=

√2𝐺𝐹
3𝑀𝑍

6

128𝜋4𝑠
⋅

1

(1 − 𝑟𝑍)2
⋅ 𝜓1, (40) 

where the function 𝜓1 is given by formula (38).  

 
Fig. 11. Angular dependence of the transverse spin asymmetry at different 𝑥𝑍. 

 

 
Fig. 12. Energy dependence of transverse spin asymmetry at different angles θ 

 

Figure 13 shows the angular dependence of the differential effective cross section 

of the reaction 𝑒−𝑒+ → 𝐻𝐻𝑍0 at √𝑠 =500 GeV, 𝑥1 =0.5, 𝑥𝑊 =0.2315 and various 

energy values 𝑥𝑍: 1) 𝑥𝑍 =0.65; 2) 𝑥𝑍 =0.70; 3) 𝑥𝑍 =0.75. As can be seen from the figure, 

with an increase in the polar angle 𝜃, the differential effective cross-section increases and 
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reaches a maximum at an angle 𝜃 = 90°, and with a further increase in the same angle, 

the effective cross-section decreases. An increase in the energy 𝑥𝑍 carried away by the 

𝑍0-boson leads to an increase in the effective cross-section of the process under study. 

 

 
 

Fig. 13. Angular dependence of the process cross section 𝑒−𝑒+ → 𝐻𝐻𝑍0 at different energy values 𝑥𝑍 

 

Fig. 14 illustrates the dependence of the cross section of the process 𝑒−𝑒+ → 𝐻𝐻𝑍0 

from variable 𝑥𝑍 at √𝑠 =500 GeV, 𝑥1 =0.5 and various values of the emission angle 𝜃: 

1) 𝜃 = 30°; 2) 𝜃 = 60°; 3) 𝜃 = 90°. It can be seen from the figure that with an increase 

in the energy 𝑥𝑍 carried away by the 𝑍0-boson, the effective cross-section increases, an 

increase in the departure angle 𝜃 also leads to an increase in the effective cross-section of 

the process under consideration. 

 
Fig. 14. Energy dependence of the cross section reaction 𝑒−𝑒+ → 𝐻𝐻𝑍0 at different θ 
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5.   Conclusion 

 

In conclusion, we note that the experimental study of the reaction of the associated 

production of a Higgs boson pair and a vector 𝑍0-boson in electron-positron annihilation 

is of great interest, since it allows us to measure the interaction constants of three Higgs 

bosons 𝑔𝐻𝐻𝐻 and two 𝑍0- and two Higgs bosons 𝑔𝑍𝑍𝐻𝐻. 

Although the interaction constants of vector bosons with the Higgs boson 𝑔𝑍𝑍𝐻 and 

𝑔𝑊𝑊𝐻 are measured in the LHC in proton-proton collisions, however, direct measurement 

of the interaction constants 𝑔𝐻𝐻𝐻 and 𝑔𝑍𝑍𝐻𝐻 is associated with certain difficulties. 

Therefore, the study of the process 𝑒−𝑒+ → 𝐻𝐻𝑍0 is of particular interest. 

We discussed the process of the production of a vector 𝑍0-boson and two Higgs 

boson pairs in polarized electron-positron collisions 𝑒−𝑒+ → 𝐻𝐻𝑍0. Taking into account 

all possible Feynman diagrams a), b), c) and d) Fig. 1, analytical expressions for the 

amplitudes and differential effective cross section of the process are obtained. Left-right 

𝐴𝐿𝑅 and transverse 𝐴𝜑 spin asymmetries due to longitudinal and transverse polarizations 

of the electron-positron pair are determined.The dependence of these characteristics and 

the differential effective cross-section on the departure angles and particle energies is 

studied in detail. The calculation results are illustrated with graphs. 
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